Characterization and evaluation of an integrated quality monitoring system for online quality assurance of external beam radiation therapy
نویسندگان
چکیده
PURPOSE The aim of this work was to comprehensively evaluate a new large field ion chamber transmission detector, Integral Quality Monitor (IQM), for online external photon beam verification and quality assurance. The device is designed to be mounted on the linac accessory tray to measure and verify photon energy, field shape, gantry position, and fluence before and during patient treatment. METHODS Our institution evaluated the newly developed ion chamber's effect on photon beam fluence, response to dose, detection of photon fluence modification, and the accuracy of the integrated barometer, thermometer, and inclinometer. The detection of photon fluence modifications was performed by measuring 6 MV with fields of 10 cm × 10 cm and 1 cm × 1 cm "correct" beam, and then altering the beam modifiers to simulate minor and major delivery deviations. The type and magnitude of the deviations selected for evaluation were based on the specifications for photon output and MLC position reported in AAPM Task Group Report 142. Additionally, the change in ion chamber signal caused by a simulated IMRT delivery error is evaluated. RESULTS The device attenuated 6 MV, 10 MV, and 15 MV photon beams by 5.43 ± 0.02%, 4.60 ± 0.02%, and 4.21 ± 0.03%, respectively. Photon beam profiles were altered with the IQM by < 1.5% in the nonpenumbra regions of the beams. The photon beam profile for a 1 cm × 1 cm2 fields were unchanged by the presence of the device. The large area ion chamber measurements were reproducible on the same day with a 0.14% standard deviation and stable over 4 weeks with a 0.47% SD. The ion chamber's dose-response was linear (R2 = 0.99999). The integrated thermometer agreed to a calibrated thermometer to within 1.0 ± 0.7°C. The integrated barometer agreed to a mercury barometer to within 2.3 ± 0.4 mmHg. The integrated inclinometer gantry angle measurement agreed with the spirit level at 0 and 180 degrees within 0.03 ± 0.01 degrees and 0.27 ± 0.03 at 90 and 270 degrees. For the collimator angle measurement, the IQM inclinometer agreed with a plum-bob within 0.3 ± 0.2 degrees. The simulated IMRT error increased the ion chamber signal by a factor of 11-238 times the baseline measurement for each segment. CONCLUSIONS The device signal was dependent on variations in MU delivered, field position, single MLC leaf position, and nominal photon energy for both the 1 cm × 1 cm and 10 cm × 10 cm fields. This detector has demonstrated utility repeated photon beam measurement, including in IMRT and small field applications.
منابع مشابه
Evaluation of Accuracy and Quality assurance of external beam therapy with photons
Introduction: Receiving exact dose by the patients is vital in radiotherapy. In radiation therapy, the dosimetry of radiations is too important because of successful radiation inquires for delivering the exact dose to the target volume. This study is to evaluate the tolerances and the accuracy of calculated dose of photon beams in the treatment software system. The TECDOC1583 p...
متن کامل2D linear array device as a quality assurance tool in brachytherapy applications
Background: External beam radiotherapy and brachytherapy plays a vital role in the management of cancer cervix. High dose rate brachytherapy is being presently used worldwide for the brachytherapy applications. At present, 2-Dimensional linear array detectors are the most common QA tool used for pretreatment patient specific quality assurance in external beam radiotherapy alon...
متن کاملQuality Assurance of LINAC by Analyzing the Profile of 6-MV and 10-MV Photon Beams Using Star Track Device
Introduction: According to the American Society of Radiation Oncology, all patients receive radiation therapy during their illness, where radiation is delivered by the medical linear accelerator (Linac). The aim of this study was to evaluate the quality assurance (QA) of the Linac in analyzing the used dose profile in the treatment of cancer tumors. Materi...
متن کاملA Specific Patient Quality Assurance (PSQA) procedure for a Co-60 source based High Dose Rate Brachytherapy
Introduction: In radiation therapy, accurate dose determination and precise dose delivery to the tumor are directly associated with better treatment outcomes in terms of higher tumor control and lower post radiation therapy complications. The current study aims the development and clinical application of the Patient Specific Quality Assurance (PSQA) procedures for nasopharyngea...
متن کاملA quality assurance program for an amorphous silicon electronic portal imaging device using in-house developed phantoms: a method development for dosimetry purposes
Background: Electronic portal imaging devices (EPIDs) play an important role in radiation therapy portal imaging, geometric and dosimetric verifications. A successful utilization of EPIDs for imaging and dosimetric purposes requires a reliable quality control process routine to be carried out regularly. In this study, two in-house phantoms were developed and analyzed for implementation in a qua...
متن کاملEvaluation of a systemic change of Superficial X-ray tube characteristics
Introduction: Very low, Low and Medium X-ray machines are used extensively for Superficial Radiation Therapy mostly used for Basal Cell, Squamous Cell Carcinoma, and Melanoma skin cancers. In most of cases, Superficial X-ray Therapy (SXRT) is preferred to Electron beams generated using a linear accelerator. SXRT tube characteristics may vary with the use of the machine for a lo...
متن کامل